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Abstract. We define a model for information propagation through the oriented bonds of 
a square lattice. The source of information is the origin, and the propagation takes place 
in only one quadrant, along the diagonal f (time) direction. The information reaches 
increasing-t layers of lattice points (r, 1 )  according to a probability distribution P ( x  - x,, r, I )  
dependent only on the previous P ( x  - x,, r, f - l ) ,  where x is the concentration of present 
bonds. The model shows two distinct behaviours for large values of f :  the information 
will disappear if x < x,, or survive forever if x > x,. Taking advantage of the Markovian 
behaviour and assuming that P is homogeneous, we get the values x,=f for the critical 
concentration, Y = 1 for the f-correlation length critical exponent, 8 = 2 for the f/r crossover 
exponent, and B = f for the order parameter exponent. Along directions other than f, from 
the same origin, we get Y, = 1. The homogeneity assumption is supported by numerical 
calculations of the time evolution. This evolution is a deterministic cellular automaton, 
each cell r retaining a real (instead of discrete) value for k? The similarities and differences 
between the present model and directed bond percolation are also discussed. 

The study of phase transitions in directed lattices is very interesting for at least two 
reasons. From a practical point of view, the one-sense character of these problems 
allows some simplifications like the reduction of the number of configurations that 
appear in real space [ 13 and phenomenological [2,3] renormalisation group treatments, 
or in Monte Carlo simulations [4]. From another point of view, the directionality 
introduces an anisotropy between the ‘time’ and the transverse directions [5]. New 
universality classes and scaling relations [6] arise from this anisotropy. Another 
interesting feature of those directed problems is their relation with cellular automata 
[7]. There are also some exactly known results for directed problems [3,8]. The 
models usually treated in directed lattices are percolation and lattice animals. 

In this letter we define a particular model for information propagation along a 
directed lattice. Consider the directed square lattice (see figure l ) ,  the extension to 
other lattices or other dimensions is straightforward. A fraction x of the bonds are 
present according to a random distribution. Each bond can carry information only in 
the sense of the lattice orientation. The information propagation starts at the origin 
and flows through the present bonds. We define a t (time) axis along the principal 
diagonal, and a r axis perpendicular to it (see figure 1). First we consider the 
probability distribution P ( x - x , ,  r, t )  that a given point ( I ,  t )  will be reached by the 
information that is passed to it from line t - 1  to line t. For t = 1,  P ( x - x , ,  r, 1 )  is 
clearly equal to x for r = 1 and r = -1, the distribution being two delta functions. To 
obtain P ( x  - x,, r, t )  from the already known P ( x  - x,, r, t - l ) ,  we follow the procedure 
below. 
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Figure 1. Directed square lattice on which the information generated at the origin diffuses 
through the bonds following their orientation. 

(i)  We choose a random configuration for the line t - 1, each point retaining or 

(ii) We choose a random configuration for the bonds linking lines t - 1 and t ,  each 

(iii) We increment by one a counter c ( r )  (initially zeroed) for each point ( r ,  t )  

(iv) We repeat a, b and c, N times, N being large. 
(v) We define P ( x - x , ,  r, t )  as the ratio c ( r ) / N .  
We can think about this model as a learning process in which the probability that 

a student (point in line t )  succeeds in retaining the information is proportional to the 
number of times his teachers (neighbour points in line t - 1 )  have given it to him. The 
above definition of our model yields the recursion relation 

not the information according to the known distribution P ( x  - x,, r, t - 1 ) .  

bond present (or not) with probability x (or 1 - x ) .  

which is reached by the information. 

1 - P ( r ,  t )  = [1 - x P ( r  - 1, t - 1)][1 - x P ( r +  1, t - I)]. (1) 

The time evolution of P(x-x, ,  r, t )  can be viewed as a deterministic cellular 
automaton [9] defined by equation ( l ) ,  each cell r retaining the current value of P. 
This automaton, instead of spanning a particular configuration of the lattice like the 
one defined by Domany and Kinzel[7] for the directed percolation problem, determines 
the probability distribution itself. Depending on the value of x, the information can 
vanish for large values of t, or can survive forever. We can see this phase transition 
by focusing on the behaviour of the cell r = 0 (for which P is obviously maximal). If 
P( r = 0 )  converges to a finite value P* for large t, the information succeeds in surviving 
forever, while it vanishes if P* = 0. From equation (1) we can determine the possible 
values of P*: 

1 - P* = [ 1 - xP*]2. 

Equation (2) has two roots PT = (2x - l ) / x 2  and P: = 0. The attractor of map (1) 
(along the t axis) is PT > 0 for x > f , and becomes P: = 0 for x < f ,  as can be seen by 
linearising (1) around P*. So, the critical concentration for our model is x c = f .  

Now, we assume that P is a generalised homogeneous function of its arguments, 
as in equation (3), where E = x - x, and R is an arbitrary scaling factor: 

The value a = 1/ v was obtained noting that P( E, 0, oc)) = PT is linear in E > 0 near the 
critical point. 
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Equation (3) together with its second r derivative, equation ( 1 )  and the symmetry 
P (  -r) = P (  r )  gives us the asymptotic behaviour of P and d2P/dr2,  for E = 0 and r = 0, 
as shown in equations (4) and (5): 

P(O,O, t )  = et-’/” C>O (4) 

P(0, 0, t )  - P(0,2,  t )  = Kt-’/Y-2/e K > 0 .  ( 5 )  

Figure 2 shows log-log plots obtained by iterating the cellular automaton ( 1 )  numeri- 
cally. From those plots we can determine the values of the critical exponents v and 
8, as well as those of the constants C and K. We obtain the numerical values v = 1.00, 
8 = 2.00, C = 2.7 and K = 3.4 with the precision indicated by the displayed digits. Now 
we substitute the asymptotic equations (4) and (5)  into ( l ) ,  and obtain relation (6) 
retaining only the leading terms 

(4/ U)?- ’  = Ct-’” + (K/C)t-2’e. ( 6 )  

From (6) we can have only three possibilities: 
(i) v = l  e = 2 ;  c + ( K / c ) = ~  
(ii) v = l  e < 2 ; c = 4  
(iii) v < l  e = 2 ;  ( K / c ) = ~ / ~ .  

Possibilities (ii) and (iii) are immediately discarded by our previous numerical results 
concerning the constants C and K. We can thus conclude that possibility ( 1 )  is the 
correct one, and gives the exact values for the critical exponents v and 8, providing 
the scaling hypothesis (3) is correct. Figure 3 shows a series of data collapsing plots 
that support this hypothesis. 

i 

0 i 16 
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Figure 2. Log-log plots for P and its second r derivative at the critical concentration for 
r = 0. 

Like in directed percolation, our model presents different correlation length critical 
exponents along the axes t and r ( 6  > 1 is the ratio between these two exponents). At 
the critical concentration, the information diffuses inside a cone from the origin, and 
the width ( r )  of this cone at line t scales non-linearly with t, i.e. ( r ) -  Thus, at 
the critical concentration, the information diffuses asymptotically only in the t direction, 
the angular opening of the cone being zero. Although the number of sites reached at 
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Figure 3. Data collapsing plots to support the scaling hypothesis (3). ( a )  E =0, f =8192 
and 16384. ( b )  ( E ,  t )=(+0.0005,  8192) and (+0.00025, 16384). (c) ( E ,  t )=(-0.00001,  
8192) and (-0.000 005, 16 384). 

line t grows to infinity, they represent a null fraction of sites in that line, at the critical 
concentration. Above the critical concentration, however, the angular opening 2V of 
the cone becomes an increasing function of the concentration, giving a measure for 
the fraction of sites reached (the order parameter). 

For x > x, the model also presents another transition, from the point of view of an 
observer located far from the origin along a direction V>O. We can define a V- 
dependent critical concentration E ( * )  > 0 below which that observer is not reached 
by the information. The corresponding correlation length critical exponent v1 does 
not depend on V > 0. By arguing that different concentrations x and y for bonds along 
the two lattice directions (maintaining V = 0) is equivalent to 9 > 0 (maintaining x = y ) ,  
Domany and Kinzel [3] are able to show that v l  = 2 for directed percolation, by an 
exact calculation performed for y = 1, and also by a phenomenological RG. RG flows 
in x - y  space confirm the idea that correlations decay with distinct exponents v for 
V = O  and v 1  for V>O (see de Oliveira, Kamphorst Leal da Silva and Droz [l]). The 
relation between the exponents v, 0 and v, is not yet understood for percolation, but 
we can investigate this.point for our model. The distribution P(E,  r, t )  has another 
scaling property for E > 0 besides the one already shown in figure 3 ( b ) :  for a given 
value of x > x, ,  P (  r, t )  propagates in r space like a soliton with a constant speed V, 
maintaining the same wavefront form (see figure 4(a)). For increasing values of t ,  the 
distribution P is not modified for an observer attached to the point ro( t )  = V t  where 
P = P * / 2 .  This is very well established from our numerical results exemplified in figure 
4(a). In the neighbourhood of ro ,  where the wavefront can be approximated to be 
straight, we can understand this behaviour: due to the local character of equation ( l ) ,  
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Figure 4. The distribution function P(E, r, f )  for E > 0. (a )  Original form for x = 0.51, and 
( b )  after changing the origin of the r axis to ro( t )= '?f ,  and taking the scaling (7), for 
1=4096, 8192, 16384 and ~ = 0 . 0 1 ,  0.004, 0.002. 

the value of P will undergo the same shift for any point inside this neighbourhood. 
The scaling hypothesis (3) can be used to define another universal function g in 
equation (7),  shown in figure 4(b): 

P ( E ,  r, t )  = P * g ( E 1 / ' u )  {U = r - q t } .  (7) 

By linearising P( E, r, t - 1) around r = 9( t - l ) ,  where we also have P = P * / 2 ,  and by 
applying equation (1) at r = ro( t), we can get the function 9 ( x )  near the critical 
concentration, shown in equation (8), and the order parameter critical exponent p =f : 

E = D9* { D =  g". (8) 
The value of P is asymptotically constant for increasing values of t, along the 

direction 9 ( x ) > O .  Along another direction Y ( x ) + S V ,  where 6 9 > 0  is a small 
deviation, however, P decays exponentially. By exploring the corresponding exponen- 
tial decaying of Pocexp(ru) for r>> ro (at a fixed t), equation (1) gives r a g ' ( O ) E ' / ' .  
Along 9 ( x )  + 89, for increasing values oft ,  we get PcC exp( t T S 9 ) .  From the derivative 
of (8) we can finally find the concentration dependence of the inverse correlation 
length I ' S 9  - SE, which gives the exact value v 1  = 1. The exponents v and v, correspond 
to distinct critical behaviours and are obtained from distinct scaling features of the 
distribution function P, and the fact that both have the same value for our model is a 
particular feature (for directed percolation their values are different). 

Besides the similarities, there is a fundamental difference between directed percola- 
tion and our model. The equivalent to equation (1) for directed percolation is given 
in equation (9): 

Po( r, t )  = x( 1 - x ) P o (  r - 1, t - 1) + x( 1 - x)p0( r + 1, t - 1) + x * ~ - , ,  ( r ,  t - 1). ( 9 )  

To understand equation (9), let us analyse figure 5 .  Po(r, t )  is the probability that site 
( r ,  t )  is reached by the information generated at the origin. We can have three 
possibilities, one for each term on the right-hand side of equation (9) ,  concerning the 
presence or absence of the two first bonds linking 0 to 1 and -1. The last term 
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Figure 5. Directed square lattice with the main root and the two secondary roots. 

corresponds to the case when both bonds are present, which corresponds to the 
information being generated simultaneously at points 1 and -1. This is an interference 
term similar to the one for the two slits of the classical Young experiment. For directed 
percolation, unlike our model, this term cannot be split into two, each one depending 
only on one source of information. Equation (10) gives the difference SP(r,  t )  = 
P( r, t )  - Po( r, t )  between directed percolation and our model: 

{SP( r, t j  -x(  1 - xj[SP( r - 1, t - 1) + W ( r +  1, t - I)]}/x’ 

= [l - F‘-l,(r, t - 111 -[1- P ( r  - 1, t - 1)][1- P ( r +  1, t - 1 j]. (10) 

If we neglect this difference, we can consider our model as a mean field approximation 
for directed percolation, in the sense that we are substituting the ‘two-root term’ 1 - FI1 
by an interference-free product of two ‘one-root terms’. 

In conclusion, we succeeded in obtaining the exact critical concentration and 
exponents for a model defined on directed lattices. The model has an interesting 
anisotropy due to the orientation of the lattice, and its features have been understood 
by analysing the scaling properties of the probability distribution. A possible future 
extension of this work is the study of the equivalent scaling properties for the directed 
percolation problem. 

I have been helped with many details of this problem through conversations with Hans 
Herrmann and SCrgio Queiroz. Hans also helped in the preparation of the manuscript. 
The computational tool was provided by Amir Caldeira. 
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